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Abstract 

Measurements are presented for the eflective 
Young’s (E*) and shear (C;*) moduli and Poisson’s 
ratio of some materials of interest for solid oxide 
fuel cells (SOFC), namely 10 and 20 mot% Gd203 
doped CeO, (GCO), 3 and 8 mot% Y,Ojl stabilized 
ZrO, (TZP and YSZ), and 75 mol% NiO- YSZ. 
The dependence of moduli on porosity was charac- 
terized by employing both1 theoretical (composite 
sphere method, CSM) and empirical (exponential, 
nonlinear, and linear) equations. The theoretical 
and empirical equations were tested by determining 
the goodness of Jit of the equations to the experi- 
mental data and the standard error of estimation. 
All the equations described the modulus-porosity 
relationships equally well, except that, for NiO- 
YSZ, the empirical equations yieId better fits than 
the CSM equations. This was attributed to the fact 
that the CSM equations, derived for two-phase 
composites, might not hold for calculating the eflective 
mod&i of three-phase composites, such as these 
NiO- YSZ materials. 0 1997 Elsevier Science Limited. 

1 Introduction 

A fundamental component in planar SOFCs is 
the integrated PEN structure (PEN = Positive 
electrode-Electrolyte-Negative electrode), which is 
produced by ceramic powder processing. Tape 
casting is widely used to produce the dense elec- 
trolyte to which porous electrodes are added by 
screen printing. Alternatively, the individual layers 
of PEN components can be joined together in 
green ceramic form by tape calendaring in a con- 
tinuous process and then co-sintered.’ The 
mechanical properties of the individual layers in 
the integrated PEN structure structure will depend 
on the defects and impurities introduced during 
processing; for example it is well established that 
the Young’s modulus (E) of ceramic materials 
changes with porosity and impurity content. Since 
three individual layers of different ceramic compo- 
nents are joined together in PENS, the overall reli- 
ability of the PEN structures will be governed not 
only by the properties of the individual layers, but 
also by those of the interfaces between them. 
Residual stresses will arise from the difference 
between the thermal expansion coefficients (ol) and 
the effective Young’s modulus (E*) of adjacent 
layers.2 These mismatch stresses can result in the 
delamination of layers or the formation of micro- 
cracks in the weaker layer. 

In the past, nearly all materials research activities The compatibility of the thermal expansion 
on the design and fabrication of solid oxide fuel coefficients of SOFC components is one of the 
cells (SOFC) have been devoted to optimizing design criteria, and the relevant data for most of 
electrochemical, thermal and microstructural the prospective components are available in the 
properties. This has resulted in several electro- literature. On the other hand, the reported data on 
chemically sound SOFC systems. However, com- the elastic properties of the SOFC components are 
paratively little research has been carried out on limited to the electrolyte material, yttria-stabilized 
the mechanical properties of SOFC components zirconia (YSZ). Scafe et al. recently reported the 
and their impact on the lifetime of SOFC opera- porosity dependence of Young’s modulus of tape- 
tion. Target SOFC lifetimes are of the order of lo4 
to lo5 hours. This depends not only on the stabil- 

cast YSZ containing 8 mol% yttria, determined by 
the ultrasonic ‘pulse-echo’ technique. The elastic 

ity of electrochemical behaviour, but also on the constants of single-crystal and polycrystalline 
ability of the structure to withstand mechanical samples of yttria-stabilized zirconia with an yttria 
stresses arising from operation and residual content in the range 2 to 17 mol% have also been 
stresses from the fabrication of the cells. reported in the literature.46 The elastic constants 
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Table 1. Properties of the fabricated samples 

Material Composition 
CO& condition 

Sintering 
(rUni 

Thickness 
(mm1 

Diameter 
density (VI} 

Relative 
structure 

Crystal 

lOGC0 
20GC0 
YSZ 

NiO-YSZ 
TZP 

Ceo.9Gdo.@l ,95 15OO”C, 1 h 19&205 21 95-98 Cubic 

Ceo.8Gdo.@l .90 15OO”C, 1 h 20&2 15 21 9698 Cubic 

8mol%Y,O,-ZrO, 13OO”C, 3 h 175-190 21 93-99 Cubic 

75 mol% NiO-YSZ 13OO”C, 2 h 515-550 21 8692 Cubic 

3mol%Y,O,-ZrOt 15OO”C, 1 h 165-175 22 9&95 Tetragonal 

of both single-crystal and polycrystalline materials 
have been obtained from bulk samples, most of 
which were produced by completely different pro- 
cessing methods from those commonly employed 
for fabrication of SOFC electrolytes. Hence, the 
reported data may not be reliable for use in SOFC 
modelling and material design studies. 

This work reports a study of the porosity 
dependence of Young’s and shear moduli and 
Poisson’s ratio of typical SOFC materials, namely 
10 and 20 mol% Gd,O, doped CeO, (low-temper- 
ature electrolyte), NiO-YSZ two-phase mixture 
(precursor for composite anode), tetragonal zirco- 
nia polycrystal (TZP), and 8 mol% Y,O, stabilized 
zirconia (YSZ) (electrolytes). Moreover, these 
materials have been studied in forms that are 
representative of their use as components in the 
fuel cells. 

2 Experimental Procedure 

The general characteristics of the samples studied 
in the present work are given in Table 1. The sam- 
ples were produced in the form of circular discs by 
a polymer vehicle ceramic fabrication process, in 
which for each material a viscous ceramic powder- 
binder mixture was prepared and then shaped into 
a green tape by extrusion. Circular discs were cut 
from the green tapes, and, after binder burnout at 
4OO”C, densified by sintering in air at the tempera- 
tures given in Table 1. For NiO-YSZ and YSZ 
compositions, additional disc samples were pre- 
pared by cold compacting powders and sintering 
the compacts at 1350°C and 15OO”C, respectively. 
The final density of these samples was above 98% 
of theoretical. Both faces of these samples were 
ground to obtain an even thickness of approxi- 
mately 500 pm, and then heated to sintering tem- 
peratures for the relaxation of residual stresses 
induced by grinding. 

The density of samples was determined by the 
geometrical method. The diameter of each sample 
was measured using digital calipers (Mitutoyo, 
resolution 10 pm); six readings were taken at 30” 
intervals covering the full rotation of the sample. 

The thickness of each sample was measured using 
a digital micrometer (Mitutoyo, resolution 1 pm) 
with round probe-tips, enabling the measurements 
to be made between two point contacts at oppo- 
site sides of the sample. In order to minimize the 
effect of thickness variation on the accuracy of 
measurements, ten measurements were taken at 
certain locations, namely one measurement at the 
centre of symmetry and three and six measure- 
ments on the circles at about l/3 and 3/4 of the 
radius of the sample, respectively. The volume of 
each sample was determined using the average 
values of thickness and diameter. The range of 
measured geometrical densities for each set of 
samples is given in Table 1. 

The elastic properties of samples, namely effec- 
tive Young’s and shear moduli, E* and G*, and 
Poisson’s ratio, II*, were determined by the 
impulse excitation technique (IET) using a com- 
mercially available apparatus (GrindoSonic MK5 
‘Industrial’, J. W. Lemmens, Belgium). The proce- 
dure of the IET tests was that a circular disc sam- 
ple was supported by a foam material on its nodal 
lines, and then excited by a light mechanical 
impulse. The nodal lines of the sample in flexural 
and torsional resonance modes are illustrated in 
Fig. 1 (a). The mechanical impulse was applied to the 
sample by dropping a steel ball, with a diameter 
of 0.5 mm, at certain locations on the sample, 
which produced the flexural and torsional reso- 
nance (Fig. 1 (b)). A microphone, located beneath 
the sample, was used to transmit the sound waves 
to the signal processing unit, and the fundamental 
resonance frequencies in both flexural and tor- 
sional modes were identified. The values of E* 
and G* for each sample were computed according 
to the equation’ 

it4* = pD4( 1 - u2)( 7&&h,,) (1) 

where ~4* is E* or G*, A,,, is a constant depen- 
dent on the Poisson’s ratio (v) and the geometry 
of the sample, f,, is the resonance frequency, D 
the diameter, t the thickness, and p the density of 
the sample. The subscripts m and n are character- 
istic of the vibration mode. For the torsional fun- 
damental mode, m = 2 and n = 0, and for the 
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(a) Flexural Mode Torsional Mode 

------- Nodal lines 
X Points of excitation 

Guide 
tube 

at nodal lines I 
Microphone 

I Computer 

Fig. 1. A schematic illustration of (a) the fundamental flcxural- 
and torsional-mode nodal lines and the points of excitation 
on disc samples, and (b) the setup for the operation of the 

impulse excitation technique (IET) in torsional mode. 

flexural fundamental mode m = 0 and n = 1. The 
values of V* were also co:mputed according to a 
formulation expressed in a simplified form by 

(2) 
where g is a numerical function.7 3.2 Theoretical relations 

3 Effective Moduli 

Many investigators have analysed the effective 
elastic moduli of porous solids by treating them as 
two-phase materials, with the second phase being 
a void, and several empirical equations have been 
derived for describing the effective elastic moduli 
as a function of porosity. Also, some theoretical 
expressions have been obtained from more funda- 
mental analytical models, which encompass the 
effect of the shape, volume, distribution and inter- 
action of pores on the elastic constants. In the 
present work, three empirical equations and one 
theoretical equation were investigated to describe 
the relationship between the measured elastic con- 
stants and porosity of the SOFC materials. 

3.1 Empirical relations 
The three empirical relations expressing the effec- 
tive moduli as a function of porosity, which were 

employed to fit the experimental modulus-porosity 
data, are given by the equations 

M* = M,(l - b@) (3) 

M* = M,exp(- b,P) (4) 

IV* = Mo 
bti 

’ - 1 + (bM - 1)~ 1 (5) 
where M* is the modulus, E* or G*, at the frac- 
tional porosity, p (0 I p I l), bM is an empirical 
constant defining the porosity dependence of M*, 
and M, is the modulus, E, or G, of a sample with 
zero porosity. These equations may be considered 
as semi-empirical since they have some theoretical 
support. Dean and Lopez* have summarized the 
background theory and relative merits of the 
empirical relations used in practice, including all 
the three equations employed in this work. 

The linear relation, eqn (3), was first used to 
analyse modulus-porosity data from polycrys- 
talline Be0 by Fryxell and Chandler.’ It assumes 
a linear relationship between the elastic moduli 
and porosity of a solid. The exponential relation, 
eqn (4), which was proposed by Spriggs,” has 
found wide use in fitting modulus-porosity data 
for ceramics. The non-linear relation eqn (5), was 
proposed by Hasselman ‘I for the moduli of mate- 
rials with dilute distributions of spherical pores. 
Both the exponential and non-linear relations, 
eqns (4) and (5), are based on the treatment of 
porous solids as two-phase materials with one 
phase being spherical pores distributed randomly 
in the matrix. 

There have been several theoretical treatments of 
two-phase composites’2-14 with each phase having 
a different elastic modulus. But the analytical pro- 
cedures available for treating two-phase solids as 
continuum materials are not directly applicable 
where the second phase is a void. However, 
Ramakrishnan and Arunachalam’5,‘6 recently 
developed a theoretical approach for determining 
the effective moduli of porous solids with randomly 
distributed pores on the basis of the composite 
sphere method (CSM). This method, which was 
first introduced by Hashin,12,13 models a two-phase 
material as a sphere of the matrix material with a 
spherical pore concentrically placed in it, and 
approximates the real geometry of the two-phase 
material as an assembly of such composite spheres 
of different sizes. According to the results from 
the model calculations of Ramakrishnan and 
Arunachalam,“,“j the effective Young’s and shear 
moduli, E* and G*, and the effective Poisson’s 
ratio, V* are described as a function of porosity by 
the equations 
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E* = &( 1 - p)2/( 1 + b,p) (6) 

G* = G,( 1 - P)~/( 1 + hop) 

u* = O-25(411, + 3p - 7v,p)l(l + 2p - 3u,p) (8) 

where V, is Poisson’s ratio at zero porosity, bE = 

(2 - 3V,) and b, = (11 - 19v,)l(4 + 4~~). In the 
present work, these equations along with the 
empirical ones were employed to describe the 
porosity dependence of the terms, E”, G*, and V* 
for the studied materials. 

4 Data Analysis 

The empirical relations, namely the linear, expo- 
nential, and non-linear equations, given in eqns 
(3), to (5), were fitted to the experimental modulus 
versus porosity data from each set of samples, 
employing computer-aided iterative calculations. 
The goodness of the fit between each fitted equa- 
tion and data was determined by calculating the 
fitting parameter, S 

S= 1 - 
i 

2 (M&,M,)2/5 (M,,e,-M,)2 
1 

(9) 
i=l i=l 

where S = 1 indicates a perfect fit and values of 
S > 0.8 are considered as good fits, 1Mi is the value 
of modulus (EE or G*) calculated from the fitted 
equation for a given porosity, and Mi, exp and Mi 
are the measured modulus values and the mean 
value of Mi, respectively. A computer program 
was run to yield the best fit of the equations to the 
data under the condition that the best fit is 
achieved when the value of S is maximized. The 
adjustable parameters for curve fitting were E,, G,, 
bE, and bG (eqns (3)-(5)), which were determined 
for each material by maximizing the value of S. 
Poisson’s ratio, u*, as a function of porosity was 
then calculated from the expression for Poisson’s 
ratio in isotropic materials 

(10) 

In the CSM equations, eqns (6) and (7), the 
effective Young’s modulus, E*, is related to the 
effective shear modulus, G*, according to eqn (10) 
and the porosity dependence constants, bE and bG, 
are determined by the value of Poisson’s ratio at 
zero porosity, u,. That is, for any value of poros- 
ity, p, the CSM expressions for E* eqn (6) and G* 
eqn (7)) are interrelated according to eqn (10). 
The CSM theory predicts the value of G* once the 
values of E0 and II, are determined, or vice versa. 
Hence, the achievement of the best fit between the 
CSM equations and data required the simultaneous 

maximization of all the values of S, calculated 
from the fitted equations, eqns (6)-(8). This was 
obtained by running the same iterative computa- 
tion as described for fitting the empirical equa- 
tions to data. The adjustable parameters used for 
curve fitting were E, and u,. 

The elastic constants, cll, c12, and c14, of the 
single-crystal tetragonal zirconia and YSZ have 
been reported in the literature.b6 From these con- 
stants, theoretical estimates of E, or G, for a poly- 
crystalline structure were obtained using the 
Hashin-Shtrikman bounds for the polycrystalline 
moduli14 and the appropriate relationships of linear 
elastic theory. I7 The procedure for these calcula- 
tions has been summarized by Ingel and Lewis.4 
The resulting estimates of E,,, G,, and u, for poly- 
crystalline TZP and YSZ were used to assess the 
accuracy of both empirical and analytical (CSM) 
equations in describing the modulus-porosity rela- 
tion of these materials. 

The standard errors of the E*, G*, and u* val- 
ues, predicted for the experimental data by both 
the CSM and empirical equations, were deter- 
mined using the standard error function 

%x{[&jj[n~~2-(Q)2 (11) 

nCxy - <CX><CY>’ “2 - 
nCx2 - (cx)2 II 

where n is the number of data pairs in a data set, 
x denotes the experimental values of EC, G* or II*, 
and y the predicted ones. This function gives the 
average of the standard error in the prediction of y 
for any x in a series. The percentage standard error 
was obtained by dividing the standard error by the 
values of E,,, G,, and uO, estimated for zero porosity. 

5 Results and Discussion 

5.1 Porosity dependence of effective moduli 
Figures 2 and 3 show the plots of the effective 
moduli, E* and G*, and Poisson’s ratio, u*, as a 
function of porosity for TZP and YSZ samples, 
respectively. The modulus-porosity relationships, 
determined using the linear, exponential, non- 
linear, and CSM relations, are shown by separate 
lines in Figs 2 and 3. In these plots, the modulus- 
porosity data, reported in the literature, for single- 
crystalk and polycrystalline3*‘8~‘9 samples of TZP 
and YSZ with similar compositions to our sam- 
ples, are also shown by different symbols. The lit- 
erature data were obtained using the ultrasonic 
‘pulse-echo’ technique. The Young’s moduli 
(empty squares in Fig. 3), reported for polycrys- 
talline YSZ by Scafe et a1.,3 are the most relevant 
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0 Single clyst [4-61. 
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- . - - Linear 
l Single ctyst [4-61. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

Porosity, p Porosity, p 

Fig. 2. Variation of Young’s (E) and shear (G) moduli and 
Poisson’s ratio (u) with porosity for TZP samples. The fitted 
equations and the data from the literature are illustrated by 

separate lines and symbols, respectively. 

Fig. 3. Young’s (E) and shear (G) moduli and Poisson’s ratio 
(v) as a function of porosity for YSZ samples. The fitted 
equations and the data from the literature are illustrated by 

separate lines and symbols, respectively. 

data to compare with the present results because 
those samples were also prepared as thin plates 
for the SOFC application. As can be seen from 
Fig. 3, there is good agreement between the pre- 
sent results and the literature data for YSZ. 

The zero porosity moduli, E, and Go and their 
porosity dependence constants, bE and bo, were 
calculated using the empirical and theoretical 

(CSM) equations, fitted to the modulus-porosity 
data from TZP and YSZ samples. For each sam- 
ple set, Poisson’s ratio at zero porosity, v,, was 
determined from eqn (10). A summary of the best 
fit zero-porosity constants, E,, G,, and vo, and the 
porosity dependence constants, b, and bo, is given 
in Table 2. The estimates of E, Go and vo, for 
polycrystalline TZP and YSZ, determined from 

Table 2. The best fit values of zero-porosity moduli, E,, and G,, the porosity dependence constants, bE and bG, and Poisson’s 
ratio, uO, of TZP and CSZ samples 

Material Equation E0 G0 UC- be bc 

YSZ Exponential 220.27 83.47 0.320 -2.76 2.63 
Non-linear 220.47 83.52 0.320 2.84 -2.69 
Linear 219.53 83.22 0.319 -2.50 -2.39 
CSM 223.85 84.74 0.321 1.04 0.93 

From single crystala 220.84 + 0.8% 83.33 + 0.5% 0.316 zk 2.3% 

TZP Exponential 217.46 81.49 0.334 -3.01 2.91 
Non-linear 218.94 81.94 0.336 3-23 -3.09 
Linear 213.19 80.02 0.332 -2.48 -2.41 
csn4 217.78 81.50 0.336 0.99 0.86 

From single crystaP 216.17 f 2.7% 80.83 + 2.9% 0.337 f 0.9% - 

‘The average of the polycrystalline estimates of the single-crystal constants, reported in the literature. (Refs 46). The standard 
deviations are given in percentages. 
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Table 3. Percentage deviation of the fitted moduli, extrapolated to zero porosity, from the estimates derived from single-crystal 
elastic constants 

Material 
Zero porosity 

mod& Exponential 

Percentage deviation 

Non-linear Linear CSM 

TZP 

YSZ 

Average % deviation 
TZP 
YSZ 

Based on Refs 46. 

E0 0.60 
G, 0.83 

E0 0.26 
G, 0.50 

-k & G, 0.71 
J% & G, 0.83 

the reported elastic constants, cl,, c12, and c14, of 
single crystals, are also included in Table 2 for 
comparison. 

There is good agreement between the values of 
E,, G,, and v, from the fitted equations and the 
polycrystaliine estimation using the single crystal 
moduli.ti The corresponding percentage deviation 
between both sets of moduli values is mostly 
below l%, as shown in Table 3. The values of per- 
centage deviation for the empirical equations 

(eqns (3) to (5)) are smaller than the standard 
deviations of the reported single-crystal moduli 
(Table 2). The CSM equations (eqns (6) and (7)) 
tend to yield slightly larger values of percentage 
deviations than the empirical equations. 

The plots of the effective moduli, E* and G*, 
and Poisson’s ratio, v*, as a function of porosity 
for IOGCO, 20GC0 and NiO-YSZ samples, 
together with the fitted curves from the empirical 
and CSM equations, are shown in Figs 4, 5, and 
6, respectively. The unknown values of the zero- 
porosity elastic constants, E,, G,, and vO, and the 
porosity dependence constants, b, and bo, were 
estimated using both empirical and CSM equa- 
tions according to the procedure described above. 
The resulting data from the fitted equations are 
summarized in Table 4. 

The modulus-porosity relations for TZP, 
lOGC0, 20GC0, and NiO-YSZ samples, pre- 
sented in Table 4, are the first data made available 
in the literature. Although Sammes and Zhang2’ 
reported an average value of Young’s modulus, 
E* = 147.2 (* 16), GPa, for 20GC0 with porosity 
in the range 7 to 12%, the modulus-porosity 
relation was not given in their report. They 
obtained this value of I? from the results of four- 
point bending tests at room temperature. Our 
moduh data for 20GC0 are limited to a porosity 
range from 1.5 to 6%. By extrapolation of our 
results using the fitted equations in Fig. 5, we esti- 
mate a value of I? = 158-160 GPa for 10% 
porosity. The difference between the two values of 

- 

1.28 1.38 0.75 
1.39 1 .oo 0.84 

0.17 0.59 1.36 
0.43 0.79 1,02 

1.33 1.19 0.79 
0.30 0.69 1.19 

E* is not significant, being less than one standard 
deviation of the value measured by Sammes and 
Zhang. It may also be mentioned that, for use in 
SOFCs, all the materials studied, except NiO- 
YSZ, are required to have high densities. Hence 
the experimental data, comprising up to 30 values 
of effective moduli, I? and G*, were obtained 
from samples with a porosity, p < 16% (0.009 < p 

-c 0.16). This limited range of porosity is expected 
to reduce the accuracy of estimating the effective 
moduli for very large values of porosity, using the 
constants given in Tables 2 and 4. 

0.34 
lOGc0 l Thiswork 

.s -CSM 

- - - Exponential 

------Nonlinear 

- - - _ Linear 

240 t+ 

200 
3 
8 
;;’ 160 
r3 

-5 
zA 

120 

l This work 

-CSM 

- - - Exponential 

------Nonlinear 

- - - - Linear 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

Porosity, p 

Fig. 4. Effective Young’s (I??) and shear (G*) moduli and 
Poisson’s ratio (v*) as a function of porosity for lOGC0 sam- 
ples. The fitted equations are illustrated by separate lines, as 

shown in the legend. 
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Table 4. Best fit values of zero-porosity moduh, E, and G,, the porosity dependence constants, b, and b,, and Poisson’s ratio, vo, 
of lOGC0, NiO-YSZ, and 20GC0 samples 

Material Equation E0 G0 V0 b, bo 

lOGC0 Exponential 21781 81.60 0.335 2.92 2.76 
Non-linear 21808 81.68 0.334 3.01 2.83 
Linear 216.99 81.32 0.334 2.67 2.54 
CSM 218.48 81.94 0,333 1 .oo 0.88 

NiO-YSZ Exponential 207.13 78.04 0.327 2.48 2.38 
Non-linear 207.22 78.04 0.328 2.55 2.42 
Linear 20546 77.48 0.326 2.10 2.03 
CSM 218.78 80.58 0.358 0.93 0.77 

20GC0 Exponential 213.31 79.91 0.335 264 2.47 
Non-linear 213.57 79.98 0.327 2.71 2.52 
Linear 212.24 79.56 0.334 2.39 2.25 
CSM 216.57 81.21 0.333 1.00 0.87 

All the equations fitted to the modulus-porosity But, the effective moduli, E* and G*, calculated 
data from 10 and 20GCO, YSZ, and TZP agree by the CSM equations, deviate from those 
with each other quite well (Figs 2 to 5). Also, the obtained from the empirical equations (Fig. 6). 
availability of moduli data for very low porosity The resulting values of Poisson’s ratio are much 
down to 1.5% yielded very accurate estimation of larger than those calculated from the empirical 
the zero porosity moduli, as shown for YSZ and equations and experimental data. Also, the esti- 
TZP in Tables 2 and 3. In the case of equation fit- mates of E, and G, values are about 5% higher 
ting to the data from NiO-YSZ samples, all the than the values from empirical equations (Table 
empirical equations agree well with each other. 4). The moduli data, corresponding to about 2% 

l This work 
-CSM 
- - - Exponential 
. -. - - -Nonlinear 
- . - - Linear 

0.36 

*> 0.35 

.s 0.34 
A _W 0.33 

8 0.32 

2 0.31 

0.3 

0.31 II 0.29 

NiO-YSZ . This work 
-CSM 
- - - Exponential 
. . . .._ Nonlinear 
- - -. Linear 

l This work 240 

40 

0 

- CSM 

- - - Exponential 

2 ------Nonlinear 

8 - . - - Linear 
1;’ 160 -- 
r3 

?I 
“w 

120 -- 

l This work 

- CSM 

- - - Exponential 

------Nonlinear 
___.__Lhear 

-I 

0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 

Porosity, p 

0 0.015 0.03 0.045 0.06 0.075 0.09 

Porosity, p 

Fig. 5. Effective Young’s (I?) and shear (G*) moduli and Fig. 6. Effective Young’s (EC) and shear (G*) moduli and 
Poisson’s ratio (v*) as a function of porosity for 20GC0 sam- Poisson’s ratio (v*) as a function of porosity for NiO-YSZ 
ples. The fitted equations are illustrated by separate lines, as samples. The fitted equations are illustrated by separate lines, 

shown in the legend. as shown in the legend. 
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Table 5. Goodness of fit of empirical and theoretical (CSM) equations to the experimental modulus-porosity data 

Material 
Effective 
moduli Exponential 

Goodness ofjit, S 

Non-linear Linear CSM 

lOGC0 

TZP 

NiO-YSZ 

20GC0 

YSZ 

Average 

E* 0.886 0.886 0.885 0.885 
G* 0.872 0.872 0.871 0.869 

El 0.922 0.920 0.926 0.922 
G* 0.882 0.881 0.888 0.883 

EC 0.989 0.988 0.995 0.928 
G* 0.987 0.986 0.994 0.929 

EC 0.970 0.970 0.969 0.947 
G* 0.959 o-959 0.959 0.927 

El 0.990 0.990 0.989 0.975 
G* 0.982 0,982 0.98 1 0.963 

EC and G* 0.944 0.943 0.946 0.923 

porosity (Fig. 6), confirm that the CSM equations 
overestimate the values of E,, and G,. It appears 
that the empirical equations provide a better 
description of the moduli-porosity relation for the 
NiO-Y SZ samples. 

The theoretical model, employed to obtain the 
moduli-porosity equations of the composite sphere 
model (CSM), is based on the approximation of a 
porous structure to an assembly of composite 
spheres, each formed by a sphere of matrix mate- 
rial with a spherical pore concentrically placed in 
it.15,16 The CSM equations (eqns (6) to (8)) were 
derived on the basis of the following general equa- 
tion given by Hashin and Shtrikman12,13 

p _ “j (12) 
3eij 

where K* is the effective bulk modulus and ati 
and & are volume averages of the hydrostatic 
stress and strain in the composite sphere, respec- 
tively. 

The adaptation of eqn (12) to represent the stress 
and strain distribution in a multi-pore geometry of 
a two-phase composite structure yields the effec- 
tive moduli expressions of the CSM theory. In 
terms of this theoretical model, the composite 
structure of NiO-YSZ samples contains three 
phases, including pores, NiO, and YSZ. The inclu- 
sion of the third phase, either NiO or YSZ, with 
different moduli in the composite should result in 
a change in the volume average of stress and 
strain, described in eqn (12) in primitive form. 
Hence, the CSM equations, derived for two-phase 
composites, may not be valid for estimating the 
modulus-porosity relations in three-phase compos- 
ites. This might account for the observed devia- 
tion of the CSM moduli and Poisson’s ratio of 
NiO-YSZ from both experimental data and plots 
of empirical equations at low values of p (Fig. 6). 

4.2 Goodness of fit 
The goodness of fit parameters, S, of the empirical 

Table 6. Percentage standard error in estimating the effective moduli by fitting the empirical and theoretical (CSM) equations to 
moduli-porosity data 

Material Moduli Exponential 

Percentage standard error, uy_ 

Non-linear Linear CSM 

lOGC0 EC 1.30 1.29 1.30 1.34 
G* 1.17 1.17 1.17 1.23 

TZP E* 1.43 1.43 1.42 1.45 
G* 1.70 1.70 1.70 1.73 

NiO-YSZ EC 0.78 0.77 0.89 0.92 
G* 0.57 0.56 0.59 0.67 

20GC0 E* 0.98 0.98 0.99 1.12 
G* 1.08 1.08 1.08 1.25 

YSZ E* 1.01 1.00 1.07 1.12 
G* 1.26 1.24 1.33 1.41 

Average of u for E & G 1.13 1.12 1.15 1.22 
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and theoretical (CSM) equations to the experi- 
mental data (E* and G*), determined using eqn 
(9), are given in Table 5. A second test of the 
equations against the experimental data was car- 
ried out by determining the percentage standard 
error, 0--Y (eqn (11)) of the E*, G* and u* of the 
experimental data sets. Tlhe results, presented in 
Table 6, demonstrate that in all cases the error is 
less than 2% of the zero porosity values of moduli. 
Depending on the scatte:r of the experimental 
data, the values of S and s~_~ for each equation 
change from one sample set to another. The val- 
ues of S for both empiric’al and CSM equations, 
fitted to the moduli data from 10 and 20GC0, 
YSZ, and TZP (Table 5)1, are very similar and 
mostly greater than 0.9, indicating very good fit to 
the experimental data. For these sample sets, there- 
is little to choose between the different equations 
although the non-linear and exponential equations 
show slightly better fits. 

The empirical equations fitted to the moduli 
data for NiO-YSZ also yielded similar values of S 
and ax-Y (Table 6). But th(e CSM equations gave 
rise to smaller values of S (about O-93) and larger 
percentage standard error than those from the 
empirical equations. This reflects the possibility 
that the CSM equations might not hold for calcu- 
lating the effective moduli of three-phase compos- 
ites, such as these NiO-YSZ samples. 

The difference between the goodness of fits of 
the different equations is negligibly small in this 
work. Although these equations fit data equally 
well over the small range of porosity studied here, 
further moduli data covering a larger porosity 
range would be required to determine the accu- 
racy of these equations in estimating the effective 
moduli of porous solids more generally. Dean and 
Lopez’ have tested the empirical equations against 
a selected set of modulus-porosity data, reported 
in the literature for different ceramic materials. 
They found that the linear relation (eqn (3)) gave the 
best fit. However, the fact that Dean and Lopez’ 
fitted the equations to data for a given material 
produced by different fabrication routes might 
have masked a small non-linearity observed here. 

5 Conclusions 

The effective Young’s (E*) and shear (G*) moduli 
and Poisson’s ratio (u*) of some of the materials 
of interest for solid oxide fuel cells (SOFC), 
namely 10 and 20% Gd&doped CeOz (GCO), 
TZP, YSZ, and NiO-YSZ, were determined at 
room temperature using the impulse excitation 
technique on some samplles that had been pro- 
duced in a form compatible with their potential 

use. The dependence of moduli on porosity was 
characterized by employing both theoretical (com- 
posite sphere method, CSM) and empirical (expo- 
nential, non-linear, and linear) equations. The 
experimental data from our samples showed good 
agreement with the literature data for YSZ, the 
only material for which the polycrystalline moduli 
have been reported previously. 

The zero porosity moduli of YSZ and TZP, 
estimated using the fitted equations, showed good 
agreement with the previously reported single- 
crystal moduli of these materials, reinforcing the 
accuracy of the fitted equations in describing the 
modulus-porosity relationships. A similar compar- 
ison could not be made for 10 and 20GC0 due to 
the lack of single-crystal data. A comparison is 
not possible in principle for NiO-YSZ since it is a 
composite material at zero porosity. 

The theoretical and empirical equations used 
were tested by determining the goodness of fit of 
the equations to the experimental data and the 
corresponding standard error of estimation. The 
goodness of fit corresponded to a relative stan- 
dard deviation of about 1% in estimating the 
modulus for a given porosity. For 10 and 20GC0, 
YSZ, and TZP, there was no significant difference 
between the goodness of fit of all the equations. 
For NiO-YSZ, the empirical equations were found 
to yield better fits than the CSM equations. The 
less good fits obtained for the CSM equations sug- 
gest that they are limited in applications to the 
moduli-porosity relationships in two-phase com- 
posites, and are not strictly applicable to materials 
containing three phases, namely pores, NiO, and 
YSZ in these materials. 
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